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Abstract: Prediction of proteins tertiary structure, starting fronsiamino acids se-
quence, still remains a challenge in computational biolog# are developing a method
to fold proteins in silico, starting from a HMM based struclalphabet which consists
of a local 3D description of the structure. Candidate protdiagments are selected by
SAFrAN, a new original approach combining SA-Search andilprprediction condi-
tionned by PSIPRED results. Selected fragments cover tgettaequence with more
than 90% and can approximate the native structure at highueszy (less than 23).
Fragment assembly is performed by an improved greedy dfgoriand the relevance of
the models is evaluated by a simplified version of the cograed Optimized Potential
for Efficient structure Prediction (SOPEP). We discuss tifieciveness of the approach
to generate de novo 3D models of proteins.
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1 Introduction

Large scale genome sequencing projects bring sequencdsadas to grow exponentially. Even if
the number of known proteins structures evolves in the samg only few of the detected ORFs
correspond to proteins having an experimentally resohi2atBucture. For such a reason, we need
high throughtput methods to generate 3D protein structuviesreover, for the proteins that fall out
the range of application of comparative modelling, we nesthitiques able to generate new folds.
This is the main purpose @b initio and de novostructure prediction method#\b initio methods
such as UNRES [1] are only established on protein physiagbepties : starting from a fully un-
folded peptidic chain, their goal is to generate the natdlé &s it could happen in the natural protein
environment.De novomethods are generally constructed on protein structutistgtal properties.
Most of these methods are based on selected protein fragmientebuild protein structure, fragment
assembly methods are used, combined to an energy functieserily, the most successfull methods
are Rosetta [2,3] and TASSER [4,5]. The method we have deedlcan be related to them, but is
based on the concept of structural alphabet. First, we @redindidate fragments from the amino
acids sequence, using an HMM derived structural alphalietn;Twe assemble such fragments using



a folding potential to generate protein models. We will dssthe lessons of such approach applied
during CASP7 (Critical Assessment of Techniques for PnoBiucture Prediction).

2 Model generation

2.1 HMM-SA: HMM based Structural Alphabet

Structural alphabet properties.  The present method is based on a Hidden Markov Model (HMM)
learnt from 1429 PDB [6] structures [7,8]. Each letter of #hghabet is a 4 residues length protein
fragment. Letters overlap on 3 residues. HMM is described ljstances between alpha carbons:
C1C3, C1C4, C2C4, and the projection of C4 on the plane destipy C1C2C3. This results in
an optimal SA (Structural Alphabet) of 27 states or lettensesponding to 155 prototypes (or sub-
conformations). The letters are labelled- Z, a] .

Structural alphabet encoding of proteins. Each state is described by a multi-gaussian density,
and the transition matrix of the Markovian process quastiffee connections between the letters.
Given such model, it is possible to encode each protein asigssa letters of the alphabet using
the forward-backward algorithm for example. It computes,efach position, the probability that the
structure is represented by each of the 27 states, themsehe most probable letter at each position.

Structural alphabet prediction from amino acids sequence. To predict SA letters from
amino acids, we use the Markovian Model from the probabiligt SA letters emit amino acids se-
quences. This was learnt from a collection of HMM-SA encoded redundant proteins. In addition,
itis possible to constrain the forward-backward algoritiora subset of the SA-letters at each position
of the sequence. We use this possibility to constrain thdigiien using PSIPRED [9]. PSIPRED
evaluate the confidence level of the prediction between Bargb, for the regions of the sequence
predicted with a confidence more than a given threshold eme apply the following constraints:
regions predicted as

i— helices, we only considgra AV WZ B C D E],

i — strands, the set of lettersfis MN T X J K],

iiil— coils, weconsidefBCDEFGHI JKLNOPQRSTUY Z],
iv— and others, the full alphabet is used (27 letters).

2.2 SAFrAN: Structural Alphabet candidate Fragments from A miNo acid sequence

To determine the collection of candidate fragments, SAFsAiNethod steps are : (i) predict HMM-
SA profile from the amino acids sequence conditionally toFfRED [9]), (ii) search fragments com-
patible with the predicted profile in an HMM-encoded nonenedlant PDB-derived profiles database
(this method is derived from SA-Search [10]), and then @jpply filters to refine fragment selec-
tion (amino acids compatibility and PsiPred compatibjlityrhe step (i) and (iii) are iterated until
the maximal percentage of covered sequence is reacheddnmgenew fragment can be detected).
Remaining non-covered parts are filled using direct HMM-$@&dgiction from sequence.



2.3 The greedy algorithm

The protein model is built linearly by overlapping predittseries of fragments. At each step of
the model reconstruction, the greedy algorithm builds a#igible combinations of fragments, ranks
them according to an objective function, and keeps onlyitbest solutions for the next iteratioh (
is called the heap). The original algorithm proposed by Kgland Levitt [12], has been improved
by three ways [13]: (i) the algorithm is now stochastic (at @dithe heap is randomly choosen), (ii)
we add prefilters, consisting of mini-runs on small partshef $tructure, to avoid some transitions,
and (iii) the algorithm is now iterated : we build the struetrom N to C terminus and then from C
to N terminus.

2.4 The objective function

Algorithm validation.  To test the capability of the algorithm to reconstruct pirotstructures,
cRMSd @ carbons Root Mean Square Deviation) criterion was first usedrive the greedy al-
gorithm, combined with a fuzzy description of the structiwerebuilt (HMM-SA letters with a
probalility p > 107%). Reconstruction of protein structures are on averageewaetiat less than
1 A cRMSd [13]. In a second time, the improved version of theedgealgorithm, driven by a Go
based criterion, leads to structures differing by less thai cRMSd from the native structure [13].
Using only secondary structure information, and consmigall the possible letters for non struc-
tured regions, the procedure could built 20 protein stmastwof 50-164 amino acids within 2.7 to
6.5A cRMSd [14] under Go criterion.

Coarse-grain force field. The greedy algorithm requires a computationaly non-expersn-
ergetic function to drive the search during the folding dations. In this context, the choice of
coarse-grained force field seems appropriate. OPEP ((qatthi?otential for Efficient structure Pre-
diction) [15] is a coarse-grained force field establishedaasix-bead model per amino acid : the
protein backbone is fully defined (N,&C C and O atoms are explicit), and the side-chains are repre-
sented by one single bead. It has been found that this foldeidiefficient to study protein folding
and agregation [16,17,18,19,20,21,22,23]. We used a ieapl/ersion of the OPEP force field to
skip all geometrical energetic termise( valence, bond lengths, dihedral angles exdept 0). This
version of the force field is named sOPEP for simplified Optedi Potential for Efficient structure
Prediction. We are now optimizing SOPEP parameters by time seay as OPEP [24].

3 Results

3.1 Candidate fragments selection

We test SAFrAN on 228 representative selected PDB strugtisee figure 1). It appears that, most
of the time, only one fragment is selected by position of #rgdt amino acids sequence (fig. 1A).
The fragments lenghts are, on average, between 6 and 9esdahg (fig. 1B), but for some targets,
fragments longer than 40 residues were obtained. Fragnaentgacy has been assessed locally
and globally. Local accuracy is checked by superposing &@gment onto the native structure
of the target, and by deducing the cRMSd between the stegtuFigure 1C shows that 75% of
the fragments have a local cRMSd of less thaA from the native structure. This result is quite
identical to those obtained by Yang and Wang [11], but agpe@arse than Kolodny et al [12]. This
makes sense: they used clusterized fragments of less tlesiduies long, and long fragments have a
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Figure 1. SAFrAN, candidatefragmentsproperties. A: distribution of the number of fragments per position.
B: distribution of the fragments lengths in HMM-SA letterbdtx-axis is truncated at 10L: distribution of
the local-fit approximationD: distribution of the global-fit approximation. Red veriitiaes represent mean
values.

higher probability to derive from the local structure th&ioier ones, due to the decreasing number
of degrees of freedom. Global accuracy of the candidaterfesugs is evaluated by calculating the
cRMSd between the native structure and the model rebuiigubie HMM-SA letters of the fragments
to feed the greedy algorithm under cRMSd criterion (seei@e@.3). The distribution of these
cRMSd is shown in figure 1D. Taken together, the candidatgniemts could lead to a near-native
structure, with an average cRMSd ofA2 Note that 60% of the models have a cRMSd value of less
than 2A, and 90% of less than& when compared to the native structure. Such global appratxon

of the native structure is comparable to that obtained by#y et al [12], but, here, starting from
prediction.

3.2 CASP7

Last summer, we participated to the 7th edition of the Giitisssessment of Techniques for Protein
Structure Prediction. We predicted the structure of 15et@rdrom the 3 CASP categories : 4 free
modelling (FM) targets, 9 high accuracy template based ifindéHA-TBM) targets, and 2 template
based modelling (TBM) targets. Only few targets were sutatitiue to concurrent development and
improvement of the procedure during CASP. Emphase was deivoiargets. During this experiment,
we started to develop a new homology modelling method staftom 3D-Jury [26] templates.

Assessing candidate fragments quality. For each kind of target, we analyse the fragments
predicted by SAFrAN, in terms of (i) percentage of coverafjthe target sequence, (ii) complexity



FM HA-TBM TBM TOT
% Coverage 97% 94% 88% 94%
Search complexity (1)  23.43+5.20 19.43:6.8 18.86+4.74 20.49+6.05
Search complexity (2) 14.11+2.61 12.19+3.51 12.31+2.02 12.72+3.09
#HMM-SA letters/ Pos 7.44+4.84 599+4.82 5.61+4.56 6.20+4.83
Best Rebuilt cRMSd (1) 0.88A +0.49 1.62A +£0.52 1.34A +0.18 1.39A +£0.57
Best Rebuilt cRMSd (2) 1.12A +0.41 1.964 +0.54 1.68A +0.33 1.708 +£0.59

Table 1. SAFrAN performance. (1) Using all prototypes by letter. (2) Using 3 prototypesanaum by letter.
TOT =FM + HA-TBM + TBM.

of the searchife., the average number of rigid fragment used per residue gluniodel generation),
(i) the average number of SA letters describing each mwsiof the structure (max is 27.e. no
prediction), and (iv) best built cRMSd. The results are enésd in table 1. Despite of the small
number of analysed proteins (15 targets), previous obde®y¥d-rAN’s properties seems conserved:
coverage of the target sequence is good (about 90%), withpaisingly high level for FM targets,
and the average best rebuilt cRMSd is lower thak @ith the lowest value for FM targets (O.8°S.
During CASP7, we note that the search complexity could beedsed by only considering the 3
most populated prototypes of a HMM-SA fragment. This sifigaiion, on average, only increases
the best rebuilt cRMSd by 08 (from O to 1,&), and decrease the computation time necessary to
generate a model by a factor 2 (74 prototypes are considiestdad of the 155 original ong)This
observed complexity is in accordance with Kolodny et al [E2ld Micheletti et al [27] prior works,
when considering a library size of 155. The number of predi¢ddMM-SA letters by position vary
from 5 to 8, depending of the query sequence structuratignatiire. To conclude, the SAFrAN
method seems efficient, since we have the solution in thetselédragments.

Figure 2. T0358, FM (left) and T0383, FM (right). The native structure is colored in magenta, and our
superposed model in blue. Pictures generated using the IBditaare [25].

Assessing model generation procedure In some cases, the complete procedure, starting from
sequence only (without template structure), was able tdyme topologically near native models as
pertinent as the Robetta models [28]. We show herede/movopredicted models for the targets
T0358 and T0383 (see figure 2). For homology modelling, tesuére more problematic: it seems

3 Greedy algorithm is implemented in C language ; a typicaugtion for a protein of 100 residues length takes about
fifteen hours simulation on a single modern CPU (AMD Optergh@Hz).



that assembly procedure is too rigid. Finally, we obsenat the procedure needs a final model
refinement able to relax the whole structure.

4 Perspectives

We have described a new original approach to predict 3D datelfragments from an amino acids
sequence. Assembled by a greedy algorithm, these fragro@ntsn some cases, generate relevant
all atom protein models. The method is still under develapiieut it has revealed some promising
results for protein structure prediction during the firgttghase. The secondary structure predic-
tion performance has to be further examined. We will now $oon the improvement ade novo
folding simulations and the derived homology modeling mdthOutside from the model genera-
tion problem, SAFrAN could be helpfull for experimentatdosdetermine the local conformation of
experimentaly non resolved protein regions (NMR and X-Raglysis).
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