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Abstract: Prediction of proteins tertiary structure, starting from its amino acids se-
quence, still remains a challenge in computational biology. We are developing a method
to fold proteins in silico, starting from a HMM based structural alphabet which consists
of a local 3D description of the structure. Candidate protein fragments are selected by
SAFrAN, a new original approach combining SA-Search and profile prediction condi-
tionned by PSIPRED results. Selected fragments cover the target sequence with more
than 90% and can approximate the native structure at high accuracy (less than 2̊A).
Fragment assembly is performed by an improved greedy algorithm, and the relevance of
the models is evaluated by a simplified version of the coarse-grained Optimized Potential
for Efficient structure Prediction (sOPEP). We discuss the effectiveness of the approach
to generate de novo 3D models of proteins.
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1 Introduction

Large scale genome sequencing projects bring sequences databases to grow exponentially. Even if
the number of known proteins structures evolves in the same way, only few of the detected ORFs
correspond to proteins having an experimentally resolved 3D structure. For such a reason, we need
high throughtput methods to generate 3D protein structures. Moreover, for the proteins that fall out
the range of application of comparative modelling, we need techniques able to generate new folds.
This is the main purpose ofab initio andde novostructure prediction methods.Ab initio methods
such as UNRES [1] are only established on protein physical properties : starting from a fully un-
folded peptidic chain, their goal is to generate the native fold as it could happen in the natural protein
environment.De novomethods are generally constructed on protein structure statistical properties.
Most of these methods are based on selected protein fragments. To rebuild protein structure, fragment
assembly methods are used, combined to an energy function. Presently, the most successfull methods
are Rosetta [2,3] and TASSER [4,5]. The method we have developed can be related to them, but is
based on the concept of structural alphabet. First, we predict candidate fragments from the amino
acids sequence, using an HMM derived structural alphabet. Then, we assemble such fragments using



a folding potential to generate protein models. We will discuss the lessons of such approach applied
during CASP7 (Critical Assessment of Techniques for Protein Structure Prediction).

2 Model generation

2.1 HMM-SA: HMM based Structural Alphabet

Structural alphabet properties. The present method is based on a Hidden Markov Model (HMM)
learnt from 1429 PDB [6] structures [7,8]. Each letter of thealphabet is a 4 residues length protein
fragment. Letters overlap on 3 residues. HMM is described by4 distances between alpha carbons:
C1C3, C1C4, C2C4, and the projection of C4 on the plane described by C1C2C3. This results in
an optimal SA (Structural Alphabet) of 27 states or letters corresponding to 155 prototypes (or sub-
conformations). The letters are labelled[A-Z,a].

Structural alphabet encoding of proteins. Each state is described by a multi-gaussian density,
and the transition matrix of the Markovian process quantifies the connections between the letters.
Given such model, it is possible to encode each protein as a series of letters of the alphabet using
the forward-backward algorithm for example. It computes, for each position, the probability that the
structure is represented by each of the 27 states, then returns the most probable letter at each position.

Structural alphabet prediction from amino acids sequence. To predict SA letters from
amino acids, we use the Markovian Model from the probabilitythat SA letters emit amino acids se-
quences. This was learnt from a collection of HMM-SA encodednon redundant proteins. In addition,
it is possible to constrain the forward-backward algorithmto a subset of the SA-letters at each position
of the sequence. We use this possibility to constrain the prediction using PSIPRED [9]. PSIPRED
evaluate the confidence level of the prediction between 0 and9. So, for the regions of the sequence
predicted with a confidence more than a given threshold (here5), we apply the following constraints:
regions predicted as

i – helices, we only consider[a A V W Z B C D E],
ii – strands, the set of letters is[L M N T X J K],
iii – coils, we consider[B C D E F G H I J K L N O P Q R S T U Y Z],
iv – and others, the full alphabet is used (27 letters).

2.2 SAFrAN: Structural Alphabet candidate Fragments from A miNo acid sequence

To determine the collection of candidate fragments, SAFrAN’s method steps are : (i) predict HMM-
SA profile from the amino acids sequence conditionally to PSIPRED [9]), (ii) search fragments com-
patible with the predicted profile in an HMM-encoded non-redundant PDB-derived profiles database
(this method is derived from SA-Search [10]), and then (iii)apply filters to refine fragment selec-
tion (amino acids compatibility and PsiPred compatibility). The step (ii) and (iii) are iterated until
the maximal percentage of covered sequence is reached (no accurate new fragment can be detected).
Remaining non-covered parts are filled using direct HMM-SA prediction from sequence.



2.3 The greedy algorithm

The protein model is built linearly by overlapping predicted series of fragments. At each step of
the model reconstruction, the greedy algorithm builds all possible combinations of fragments, ranks
them according to an objective function, and keeps only theh best solutions for the next iteration (h

is called the heap). The original algorithm proposed by Kolony and Levitt [12], has been improved
by three ways [13]: (i) the algorithm is now stochastic (a part of the heap is randomly choosen), (ii)
we add prefilters, consisting of mini-runs on small parts of the structure, to avoid some transitions,
and (iii) the algorithm is now iterated : we build the structure from N to C terminus and then from C
to N terminus.

2.4 The objective function

Algorithm validation. To test the capability of the algorithm to reconstruct protein structures,
cRMSd (α carbons Root Mean Square Deviation) criterion was first usedto drive the greedy al-
gorithm, combined with a fuzzy description of the structureto rebuilt (HMM-SA letters with a
probalility p > 10

−6). Reconstruction of protein structures are on average achieved at less than
1 Å cRMSd [13]. In a second time, the improved version of the greedy algorithm, driven by a Go
based criterion, leads to structures differing by less than4.8Å cRMSd from the native structure [13].
Using only secondary structure information, and considering all the possible letters for non struc-
tured regions, the procedure could built 20 protein structures of 50-164 amino acids within 2.7 to
6.5Å cRMSd [14] under Go criterion.

Coarse-grain force field. The greedy algorithm requires a computationaly non-expensive en-
ergetic function to drive the search during the folding simulations. In this context, the choice of
coarse-grained force field seems appropriate. OPEP (Optimized Potential for Efficient structure Pre-
diction) [15] is a coarse-grained force field established ona six-bead model per amino acid : the
protein backbone is fully defined (N, Cα, C and O atoms are explicit), and the side-chains are repre-
sented by one single bead. It has been found that this force field is efficient to study protein folding
and agregation [16,17,18,19,20,21,22,23]. We used a simplified version of the OPEP force field to
skip all geometrical energetic terms (i.e. valence, bond lengths, dihedral angles exceptΦ > 0). This
version of the force field is named sOPEP for simplified Optimized Potential for Efficient structure
Prediction. We are now optimizing sOPEP parameters by the same way as OPEP [24].

3 Results

3.1 Candidate fragments selection

We test SAFrAN on 228 representative selected PDB structures (see figure 1). It appears that, most
of the time, only one fragment is selected by position of the target amino acids sequence (fig. 1A).
The fragments lenghts are, on average, between 6 and 9 residues long (fig. 1B), but for some targets,
fragments longer than 40 residues were obtained. Fragmentsaccuracy has been assessed locally
and globally. Local accuracy is checked by superposing eachfragment onto the native structure
of the target, and by deducing the cRMSd between the structures. Figure 1C shows that 75% of
the fragments have a local cRMSd of less than 2Å from the native structure. This result is quite
identical to those obtained by Yang and Wang [11], but appears worse than Kolodny et al [12]. This
makes sense: they used clusterized fragments of less than 7 residues long, and long fragments have a
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Figure 1. SAFrAN, candidate fragments properties. A: distribution of the number of fragments per position.
B: distribution of the fragments lengths in HMM-SA letters (the x-axis is truncated at 10).C: distribution of
the local-fit approximation.D: distribution of the global-fit approximation. Red vertical lines represent mean
values.

higher probability to derive from the local structure than shorter ones, due to the decreasing number
of degrees of freedom. Global accuracy of the candidate fragments is evaluated by calculating the
cRMSd between the native structure and the model rebuilt using the HMM-SA letters of the fragments
to feed the greedy algorithm under cRMSd criterion (see section 2.3). The distribution of these
cRMSd is shown in figure 1D. Taken together, the candidate fragments could lead to a near-native
structure, with an average cRMSd of 2Å. Note that 60% of the models have a cRMSd value of less
than 2Å, and 90% of less than 3̊A when compared to the native structure. Such global approximation
of the native structure is comparable to that obtained by Kolodny et al [12], but, here, starting from
prediction.

3.2 CASP7

Last summer, we participated to the 7th edition of the Critical Assessment of Techniques for Protein
Structure Prediction. We predicted the structure of 15 targets from the 3 CASP categories : 4 free
modelling (FM) targets, 9 high accuracy template based modelling (HA-TBM) targets, and 2 template
based modelling (TBM) targets. Only few targets were submitted due to concurrent development and
improvement of the procedure during CASP. Emphase was put onFM targets. During this experiment,
we started to develop a new homology modelling method starting from 3D-Jury [26] templates.

Assessing candidate fragments quality. For each kind of target, we analyse the fragments
predicted by SAFrAN, in terms of (i) percentage of coverage of the target sequence, (ii) complexity



FM HA-TBM TBM TOT
% Coverage 97% 94% 88% 94%
Search complexity (1) 23.43±5.20 19.43±6.8 18.86±4.74 20.49±6.05
Search complexity (2) 14.11±2.61 12.19±3.51 12.31±2.02 12.72±3.09
# HMM-SA letters / Pos 7.44±4.84 5.99±4.82 5.61±4.56 6.20±4.83
Best Rebuilt cRMSd (1) 0.88Å ±0.49 1.62Å ±0.52 1.34Å ±0.18 1.39Å ±0.57
Best Rebuilt cRMSd (2) 1.12Å ±0.41 1.96Å ±0.54 1.68Å ±0.33 1.70Å ±0.59

Table 1. SAFrAN performance. (1) Using all prototypes by letter. (2) Using 3 prototypes maximum by letter.
TOT = FM + HA-TBM + TBM.

of the search (i.e., the average number of rigid fragment used per residue during model generation),
(iii) the average number of SA letters describing each position of the structure (max is 27,i.e. no
prediction), and (iv) best built cRMSd. The results are presented in table 1. Despite of the small
number of analysed proteins (15 targets), previous observed SAFrAN’s properties seems conserved:
coverage of the target sequence is good (about 90%), with a surprisingly high level for FM targets,
and the average best rebuilt cRMSd is lower than 2Å, with the lowest value for FM targets (0.88̊A).
During CASP7, we note that the search complexity could be decreased by only considering the 3
most populated prototypes of a HMM-SA fragment. This simplification, on average, only increases
the best rebuilt cRMSd by 0.3̊A (from 0 to 1 Å), and decrease the computation time necessary to
generate a model by a factor 2 (74 prototypes are considered,instead of the 155 original one)3. This
observed complexity is in accordance with Kolodny et al [12], and Micheletti et al [27] prior works,
when considering a library size of 155. The number of predicted HMM-SA letters by position vary
from 5 to 8, depending of the query sequence structuration signature. To conclude, the SAFrAN
method seems efficient, since we have the solution in the selected fragments.

Figure 2. T0358, FM (left) and T0383, FM (right). The native structure is colored in magenta, and our
superposed model in blue. Pictures generated using the PyMol software [25].

Assessing model generation procedure In some cases, the complete procedure, starting from
sequence only (without template structure), was able to produce topologically near native models as
pertinent as the Robetta models [28]. We show here twode novopredicted models for the targets
T0358 and T0383 (see figure 2). For homology modelling, results were more problematic: it seems

3 Greedy algorithm is implemented in C language ; a typical simulation for a protein of 100 residues length takes about
fifteen hours simulation on a single modern CPU (AMD Opteron 2.4 GHz).



that assembly procedure is too rigid. Finally, we observe that the procedure needs a final model
refinement able to relax the whole structure.

4 Perspectives

We have described a new original approach to predict 3D candidate fragments from an amino acids
sequence. Assembled by a greedy algorithm, these fragmentscan, in some cases, generate relevant
all atom protein models. The method is still under development, but it has revealed some promising
results for protein structure prediction during the first test phase. The secondary structure predic-
tion performance has to be further examined. We will now focus on the improvement ofde novo
folding simulations and the derived homology modeling method. Outside from the model genera-
tion problem, SAFrAN could be helpfull for experimentatorsto determine the local conformation of
experimentaly non resolved protein regions (NMR and X-Ray analysis).
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