Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Discussion Conclusions & perspectives

Candidate Fragments Prediction and their Assembly with a Greedy Algorithm and a Coarse-Grained Force Field to solve Protein Folding JOBIM 2007

Julien Maupetit Frédéric Guyon Anne-Claude Camproux Philippe Derreumaux Pierre Tufféry

EBGM - Equipe Bioinformatique Génomique et Moléculaire INSERM U726 - Université Denis Diderot Paris 7 FRANCE

2007/07/11



(日)、

| Introduction | HMM based Structural Alphabet | SAFrAN | Greedy-OPEP | Results - Discussion | Conclusions & perspectives |
|--------------|-------------------------------|--------|-------------|----------------------|----------------------------|
|              |                               |        |             |                      |                            |
|              |                               |        |             |                      |                            |

# Introduction

- Sequence databases grow exponentially.
- $\bullet~~$  20-25 % of orphan genes.
- Comparative modeling approaches are very accurate, but not for orphan genes.
- $\hookrightarrow$  ab initio / de novo methods

| Yearly Growth of Total Structures<br>pumber of structures can be viewed by hereing mouse over the bar |        |        |            |                 |        |       |       |        |
|-------------------------------------------------------------------------------------------------------|--------|--------|------------|-----------------|--------|-------|-------|--------|
| 5 UN                                                                                                  | 10,000 | 13,000 | 21,000     | 10-er<br>25,000 | 10,000 | 10.00 | 40.00 | et,000 |
| 2007                                                                                                  |        | _      | _          | _               | _      | _     | _     | 2      |
| 2006                                                                                                  | -      |        |            |                 | -      |       | -     |        |
| 2006                                                                                                  |        |        |            |                 |        | -     |       |        |
| 2004                                                                                                  |        |        |            |                 |        |       |       |        |
| 2000                                                                                                  |        |        | -          |                 |        |       |       |        |
| 2000                                                                                                  | _      |        |            |                 |        |       |       |        |
| 2001                                                                                                  | _      | 2      |            |                 |        |       |       |        |
| 1999                                                                                                  | -2     |        |            |                 |        |       |       |        |
| 1998                                                                                                  | 2      |        |            |                 |        |       |       |        |
| 1997                                                                                                  |        |        |            |                 |        |       |       |        |
| 1996                                                                                                  |        |        |            |                 |        |       |       |        |
| 1995                                                                                                  |        |        |            |                 |        |       |       |        |
| 1994                                                                                                  |        |        |            |                 |        |       |       |        |
| 1993                                                                                                  |        |        |            |                 |        |       |       |        |
| 1992                                                                                                  |        |        |            |                 |        |       |       |        |
| 1991                                                                                                  |        |        |            |                 |        |       |       |        |
| 1989                                                                                                  |        |        |            |                 |        |       |       |        |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                 |        |        |            |                 |        |       |       |        |
| × 1967                                                                                                |        |        |            |                 |        |       |       |        |
| 1988                                                                                                  |        |        |            |                 |        |       |       |        |
| 1965                                                                                                  |        |        |            |                 |        |       |       |        |
| 1984                                                                                                  |        |        |            |                 |        |       |       |        |
| 1963                                                                                                  |        |        |            |                 |        |       |       |        |
| 1962                                                                                                  |        |        |            |                 |        |       |       |        |
| 1961                                                                                                  |        |        |            |                 |        |       |       |        |
| 1979                                                                                                  |        |        |            |                 |        |       |       |        |
| 1.978                                                                                                 |        |        |            |                 |        |       |       |        |
| 1977                                                                                                  |        |        |            |                 |        |       |       |        |
| 1976                                                                                                  |        |        |            |                 |        |       |       |        |
| 1.975                                                                                                 |        |        |            |                 |        |       |       |        |
| 1.97.4                                                                                                |        |        |            |                 |        |       |       |        |
| 1973                                                                                                  |        |        |            |                 |        |       |       |        |
| 1.972                                                                                                 |        |        |            |                 |        |       |       |        |
|                                                                                                       |        |        |            |                 |        |       |       |        |
|                                                                                                       |        |        |            |                 |        |       |       |        |
|                                                                                                       |        |        |            |                 |        |       |       |        |
|                                                                                                       |        |        | Total 🖬 Ye | ev.             |        |       |       |        |
|                                                                                                       |        |        |            |                 |        |       |       |        |



Introduction HMM based Structural Alphabet SAFrAN 00000

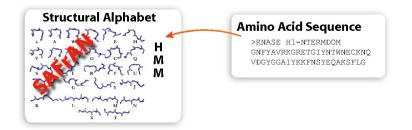
N Greedy-OPEP

P Results - Discu

Conclusions & perspectives

# The HMM-SA method

#### **Amino Acid Sequence**


>RNASE H1-NTERMDOM GNFYAVRKGRETGIYNTWNECKNQ VDGYGGAIYKKFNSYEQAKSFLG



Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Discussion Con

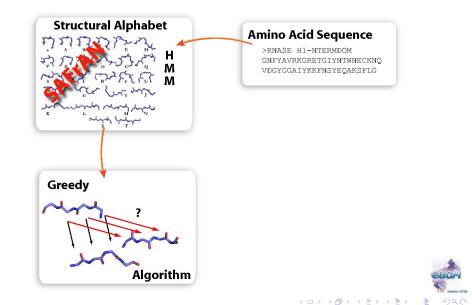
n Conclusions & perspectives

# The HMM-SA method



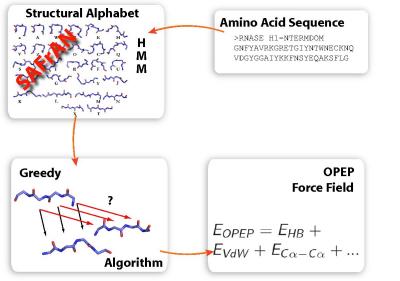


<ロト <回ト < 注ト < 注ト



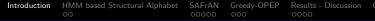

Greedy-OPEP

Results - Discuss


Conclusions & perspectives

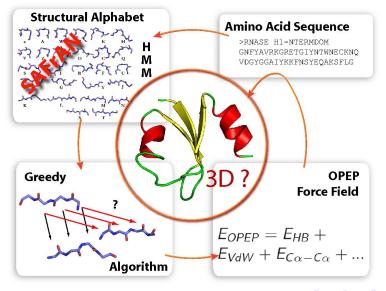
# The HMM-SA method






# The HMM-SA method






(日)、



n Conclusions & perspectives

# The HMM-SA method





・ロン ・四 と ・ ヨ と ・ ヨ と …

| Introduction | HMM based Structural Alphabet | Greedy-OPEP<br>000 | Conclusions & perspectives |
|--------------|-------------------------------|--------------------|----------------------------|
| Outlin       | e                             |                    |                            |



- HMM-SA27
- Structural Alphabet (SA)



| Introduction | HMM based Structural Alphabet | Greedy-OPEP<br>000 | Conclusions & perspectives |
|--------------|-------------------------------|--------------------|----------------------------|
| <u> </u>     |                               |                    |                            |



- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties



| Introduction | HMM based Structural Alphabet | Greedy-OPEP<br>000 | Conclusions & perspectives |
|--------------|-------------------------------|--------------------|----------------------------|
| · · · ·      |                               |                    |                            |



- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties

## 3 Greedy-OPEP

- Greedy algorithm
- OPEP: a coarse-grain force field



| Introduction | HMM based Structural Alphabet | Greedy-OPEP<br>000 | Conclusions & perspectives |
|--------------|-------------------------------|--------------------|----------------------------|
| · · · ·      |                               |                    |                            |



- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties

## 3 Greedy-OPEP

- Greedy algorithm
- OPEP: a coarse-grain force field

## Results - Discussion

- CASP7 experiment
- Improvements since CASP7



| Introduction | HMM based Structural Alphabet |  | Conclusions & perspectives |
|--------------|-------------------------------|--|----------------------------|
| 0.11         |                               |  |                            |

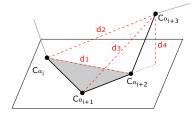


- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties

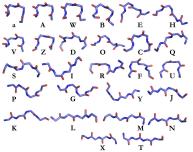
## 3 Greedy-OPEF

- Greedy algorithm
- OPEP: a coarse-grain force field

### 4 Results - Discussion


- CASP7 experiment
- Improvements since CASP7






# HMM-SA27

#### HMM-SA descriptors:



#### HMM-SA 27 states:



#### **HMM-SA** Properties

- 1 letter is **4 residues length** protein fragment
- Overlap on 3 residues
- HMM descriptors:  $d_1 d_2 d_3 d_4$
- Learnt from 1429 PDB structures
- 27 HMM states (155 prototypes)
- Camproux et al., Protein Eng., 1999.
- Camproux et al., J Mol Biol., 2004.
- Camproux and Tufféry, Biochim Biophys Acta., 2005.

イロト イポト イヨト イヨト

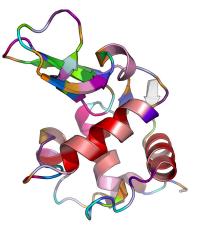


SAFrAN Greedy-OPEP

P Results - Discussion

n Conclusions & perspectives

# Structural Alphabet (SA)


## An encoding example: 135L

#### >Amino Acids

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNT HATNRNTDGSTDYGILQINSRWWCNDGRTPGSKNLCNIPC SALLSSDITASVNCAKKIASGGNGMNAWVAWRNRCKGTDV HAWIRGCRL

#### >HMMSA

NLHWAAAAAVWAVDQUSUFSLHBBVWAAAVZZFFFSPS XTLNHZDSNLNJFZDRLPECCILGDEQLUGPRGBDSKHBB BBQHEGOWAVWAAAVWABQHZRUEEEGWAAZCCQUQYGEB BVSUSP





| Introduction | HMM based Structural Alphabet | SAFrAN | Greedy-OPEP | Results - Discussion | Conclusions & perspectives |
|--------------|-------------------------------|--------|-------------|----------------------|----------------------------|
|              |                               |        |             |                      |                            |
|              |                               |        |             |                      |                            |

### 1 HMM based Structural Alphabet

- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties

### Greedy-OPEF

- Greedy algorithm
- OPEP: a coarse-grain force field

### 4 Results - Discussion

- CASP7 experiment
- Improvements since CASP7





## SA prediction from amino acids sequence

HMM-SA / Amino acids dependency

$$p(AA_i/SA_i)$$

(1)

Process learnt from a non redundant collection of HMM-SA encoded proteins.

 $\hookrightarrow$  Constrain prediction on a subset of HMM-SA letters



Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Discussion Conclusions & perspectives

## SA prediction from amino acids sequence

HMM-SA / Amino acids dependency

$$p(AA_i/SA_i)$$

Process learnt from a non redundant collection of HMM-SA encoded proteins.

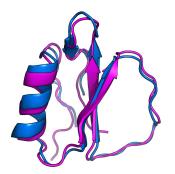
- $\hookrightarrow$  Constrain prediction on a subset of HMM-SA letters
  - Use PSIPRED (Jones D., J Mol Biol., 1999)
  - Confidence level threshold: 5 (min: 0 / max: 9)
    - helices: (a A V W Z B C D E),
    - strands: (L M N T X J K),
    - coils: (B C D E F G H I J K L N O P Q R S T U Y Z),
    - others: the full alphabet is used (27 letters).



(日)、

(1)

SAFrAN ○●○○○


Greedy-OPEP 000 Results - Discussion C

Conclusions & perspectives

# SA Search

>P1;2ci21<sup>a</sup> MGBEOUSKHVWWWWWAAAZCGZSMNTMXKKUSLNKHSLT P2QTNNN-WYZDSKGIYLXK\* TEWPELVGKSVEEAKKVILQDKPEAQIIVLPVGTIVTME YRIDRVRL-FVDKLDNIAEVP\* >P1;1cseI MGBBQUSKHAAWWWWZCCGBQPRNMXKKUSKXYPQKT PVQTMNNXKLUADSPGQKLNK\* KSPPEVVGKTVDQAREYFTLHYPQYNYYFLPEGSPVTLD

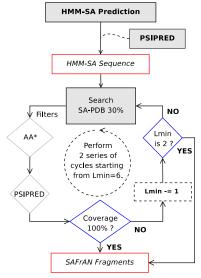
LRYNRVRVFYNPGTNVVNHVP\*



<sup>a</sup>HMMSA / AA alignments

### Search for structural similarities

- 3D structures could be aligned in HMM-SA space.
- Exact matches (Suffix tree)
- Fuzzy matches (Dynamic programming)
  → Substitution Matrix




Introduction HMM based Structural Alphabet

SAFrAN G

Greedy-OPEP 000 Results - Discussion Conclusions & perspectives

# SAFrAN algorithm



\* AA Filter evolves during series of cycles.

### SAFrAN steps are:

- Predict HMM-SA sequence from amino acid sequence, conditionnaly to PSIPRED.
- Search for compatible words in a non redundant PDB with classical alignment tools (Smith and Waterman).
- Filter solutions (Amino acids sequences compatibility, PSIPRED compatibility and redundancy).
- Decrease the minimal match length.
- Iterate until the full coverage of the sequence or no more words could be reached.

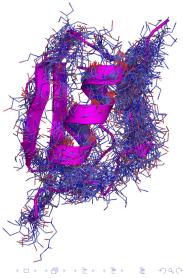
(日)、



SAFrAN Greedy-OPEP

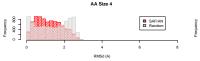
Results - Discussion Conc

Conclusions & perspectives

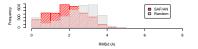

# SAFrAN example

#### Matching fragments

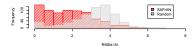
superposed on the target structure 2CI2.


### SAFrAN typical output (HMM-SA)

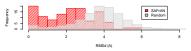
| MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYA | ### | QUERY ## | #   |     |  |
|------------------------------------|-----|----------|-----|-----|--|
| ITSNL                              | 1   | 5 2ez9A  | 406 | 410 |  |
| VSWQLN                             | 1   | 6 1u7iA  | 126 | 131 |  |
| []                                 |     |          |     |     |  |
| -TAGIIVAG                          | 2   | 9 1rypH  | 103 | 110 |  |
| LRVVFSG                            | 3   | 9 1xk7A  | 17  | 23  |  |
| []                                 |     |          |     |     |  |
| LKLFGESI                           | 5   | 12 1r64A | 468 | 475 |  |
| RSGRITL                            | 7   | 13 1musA | 263 | 269 |  |
| DGLIIPGL                           | 8   | 15 1njrA | 52  | 59  |  |
| []                                 |     |          |     |     |  |
| FEGTTT                             | 12  | 17 1czfA | 47  | 52  |  |
| []                                 |     |          |     |     |  |
| GVRTAEDAQKYLAIADELF                | 14  | 32 1p1xA | 205 | 223 |  |
| GTQREHIDLANACKEIFIKE               | 15  | 34 2cfaA | 63  | 82  |  |
| []                                 |     |          |     |     |  |
| EALKAFHELS                         | 25  | 34 1v8zA | 326 | 335 |  |
| []                                 |     |          |     |     |  |
| RFA                                | 32  | 44 1xdnA | 56  | 59  |  |




Introduction HMM based Structural Alphabet SAFrAN 0000 Selection 0000 Conclusions & perspectives 0000

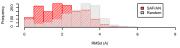

## Candidate fragments properties



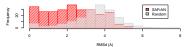




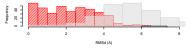

















• • • • • • • • • •



зò

| Introduction | HMM based Structural Alphabet | Greedy-OPEP | Conclusions & perspectives |
|--------------|-------------------------------|-------------|----------------------------|
|              |                               |             |                            |

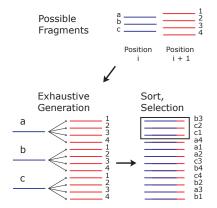
### 1 HMM based Structural Alphabet

- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties

## 3 Greedy-OPEP

- Greedy algorithm
- OPEP: a coarse-grain force field

### Results - Discussion

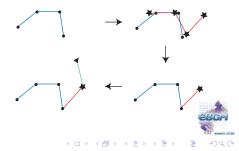

- CASP7 experiment
- Improvements since CASP7





# Greedy algorithm

#### The original greedy algorithm



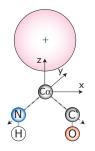

Inspired from Kolodny et al., J Mol Biol., 2002.

- Tuffery et al., J Comput Chem., 2005
- Tuffery and Derreumaux, Proteins., 2005



#### Superposition procedure:






# OPEP: a coarse-grain force field

Optimized Potential for Efficient peptide structure Prediction

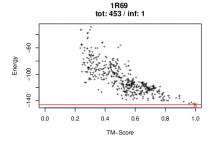
$$E_{OPEP} = E_{SC,SC} + E_{C\alpha,C\alpha} + E_{VdW} + E_{HB} + E_{bonds} + E_{angles} + E_{imp-torsions} + E_{\phi>0} \quad (2)$$

#### 6-bead model

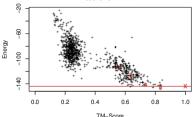


- N, HN, Cα, C, O atoms are explicit.
- Side Chains are represented by one bead.

(日)、


Santini et al., Internet Electron. J. Mol. Des., 2003.




Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Discussion 00 000 000 000 000

ussion Conclusions & perspectives

## OPEP: a coarse-grain force field

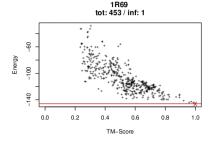




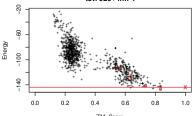


Maupetit et al., Proteins., 2007.

#### **OPEP** Optimisation


- Trained and validated on generated and publicly available decoys sets.
- OPEP is able to find a native like structure for 24 targets on 29 of our decoys sets.



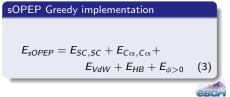

Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Disc

ussion Conclusions & perspectives

# OPEP: a coarse-grain force field








TM-Score

#### Maupetit et al., Proteins., 2007.

#### **OPEP** Optimisation

- Trained and validated on generated and publicly available decoys sets.
- OPEP is able to find a native like structure for 24 targets on 29 of our decoys sets.



| Introduction | HMM based Structural Alphabet | SAFrAN | Greedy-OPEP | Results - Discussion | Conclusions & perspectives |
|--------------|-------------------------------|--------|-------------|----------------------|----------------------------|
|              |                               |        |             |                      |                            |
|              |                               |        |             |                      |                            |

### 1 HMM based Structural Alphabet

- HMM-SA27
- Structural Alphabet (SA)
- 2 SAFrAN
  - SA prediction from amino acids sequence
  - SA Search
  - SAFrAN algorithm
  - SAFrAN example
  - Candidate fragments properties

## 3 Greedy-OPEI

- Greedy algorithm
- OPEP: a coarse-grain force field

### Results - Discussion

- CASP7 experiment
- Improvements since CASP7



Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Discussion Conclusions & perspectives

# CASP7 experiment

### SAFrAN performances.

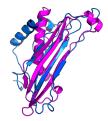
- The major part of the sequence is covered (94%)
- SAFrAN derived HMM-SA trajectories could lead to near native solutions (< 2.0 Å).</li>
- The **complexity**, *ie* average number of prototypes used at each HMM-SA position, is 13 when using 3 prototypes maximum by HMM-SA letter.





## CASP7 experiment

## Greedy performances.


t0308 (HA-TBM)



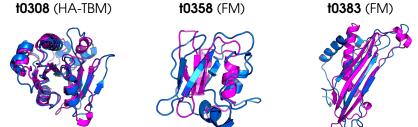


t0358 (FM)

t0383 (FM)



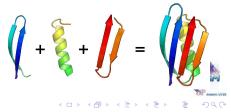
Native / Model.




◆□▶ ◆◎▶ ◆○▶ ◆○▶ ● ○



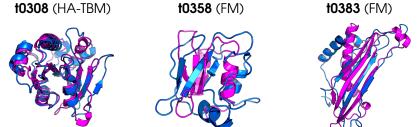
# CASP7 experiment


## Greedy performances.



#### Native / Model.

• Hierarchical approach leads to best results.


An example of hiearchical approach.





# CASP7 experiment

## Greedy performances.



#### Native / Model.

- Hierarchical approach leads to best results.
- Side chains interactions were not optimal for our discrete assembling procedure.

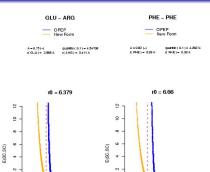
An example of hiearchical approach.

49

(prequency)

rij (A)

n = 12515


rij (A)

SAFrAN Greedy-OPEP

PEP Results - Discussion

Conclusions & perspectives

## Side chains interactions improvements



0

40

000

#### New formulation

Find parameters that best fit the interacting centroids distance distribution.

- Smooth the potential
- Lowest energy for the mean distance
- Start to penalize interaction for a quantile of 10%.



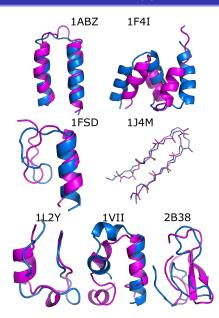


10 12 14

10 12 14

rii(A)

n = 6813


rij(A)

Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results

Results - Discussion

Conclusions & perspectives

## To a hierarchical approach ?



#### Hierarchical approach

- Are we able to build small peptides correctly ?
- Best results combined with the new PMF formulation.

Mean RMSd: 3.9 Å (vs 4.7 Å).

**1VII** with OPEP v3 PMF formulation.





# Conclusions & perspectives

### Conclusions:

- SAFrAN's method gives promising results.
- SAFrAN could be useful to assist structure resolution from experimental data.

### **Perspectives:**

- Homologous protein detection: SAFrAN ?
- Hierarchical procedure: how to split protein structures into supersecondary structure elements ?
- **sOPEP force field improvements ?** Are OPEP parameters optimal for a discrete modeling procedure ?
- Complete method automatization.



A D F A B F A B F A B F

Introduction HMM based Structural Alphabet SAFrAN Greedy-OPEP Results - Discussion Conclusions & perspectives

# Have contributed to this work

## EBGM, Paris.

- Pierre Tufféry (HMMSA, SAFrAN, Greedy, OPEP, sOPEP)
- Frédéric Guyon (HMMSA, SAFrAN, Greedy)
- Anne-Claude Camproux (HMMSA, SAFrAN)

INSERM U726, Université Paris Diderot.

## IBPC, Paris.

• Philippe Derreumaux (Greedy, OPEP)

CNRS UPR 9080, Université Paris Diderot.





| Introduction | HMM based Structural Alphabet | SAFrAN | Greedy-OPEP | Results - Discussion | Conclusions & perspectives |
|--------------|-------------------------------|--------|-------------|----------------------|----------------------------|
|              |                               |        |             |                      |                            |

|                        | FM               | HA-TBM       | TBM          | TOT                 |
|------------------------|------------------|--------------|--------------|---------------------|
| # targets              | 4                | 9            | 2            | 15                  |
| % Coverage             | 97%              | 94%          | 88%          | 94%                 |
| Search complexity (1)  | $23.43 \pm 5.20$ | 19.43 ±6.8   | 18.86 ±4.74  | <b>20.49</b> ±6.05  |
| Search complexity (2)  | 14.11 ±2.61      | 12.19 ±3.51  | 12.31 ±2.02  | 12.72 ±3.09         |
| Best Rebuilt cRMSd (1) | 0.88 Å ±0.49     | 1.62 Å ±0.52 | 1.34 Å ±0.18 | <b>1.39 Å</b> ±0.57 |
| Best Rebuilt cRMSd (2) | 1.12 Å ±0.41     | 1.96 Å ±0.54 | 1.68 Å ±0.33 | <b>1.70 Å</b> ±0.59 |

(1) Using all prototypes by letter. (2) Using 3 prototypes maximum by letter. TOT = FM + HA-TBM + TBM.

### SAFrAN performances.

- The quite full sequence is covered (94%)
- SAFrAN derived HMM-SA trajectories could lead to near native solutions (< 2.0 Å).</li>
- The complexity, ie average number of prototypes used at each HMM-SA position, is 13 when using 3 prototypes maximum by HMM-SA letter.

