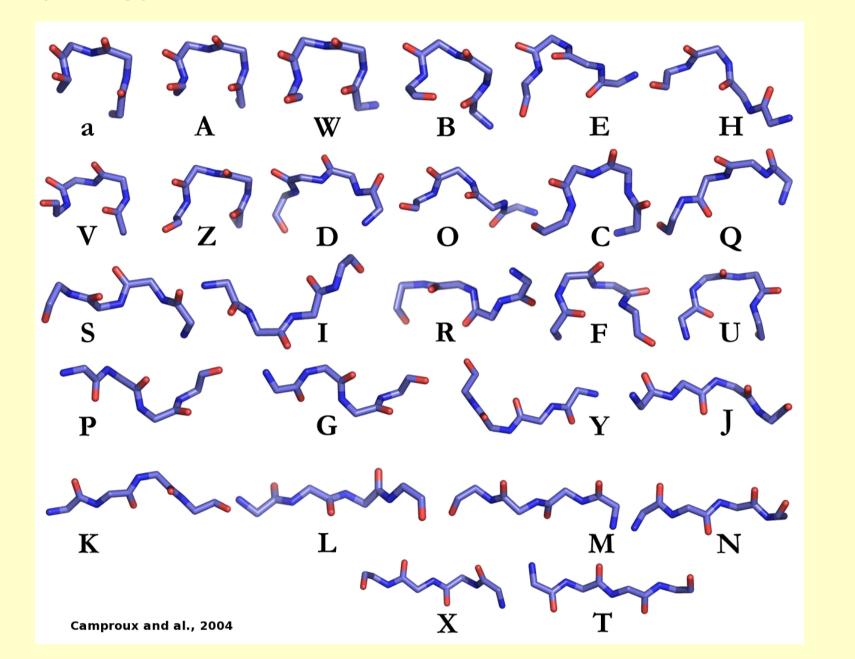

ASSESSING A NEW APPROACH FOR PROTEIN STRUCTURE MODELING COMBINING STRUCTURAL ALPHABET LOCAL CONFORMATION PREDICTION AND GREEDY ALGORITHM FOR RECONSTRUCTION.

J. Maupetit¹, F. Guyon¹, J. Martin¹,

A.C. Camproux¹, Ph. Derreumaux² and <u>Pierre Tufféry¹</u> 1 Equipe de Bioinformatique Génomique et Moléculaire, INSERM E0346,
Université Paris 7, Tour 53/54 1er Etage,
2 place Jussieu, 75251 Paris Cedex 05, France

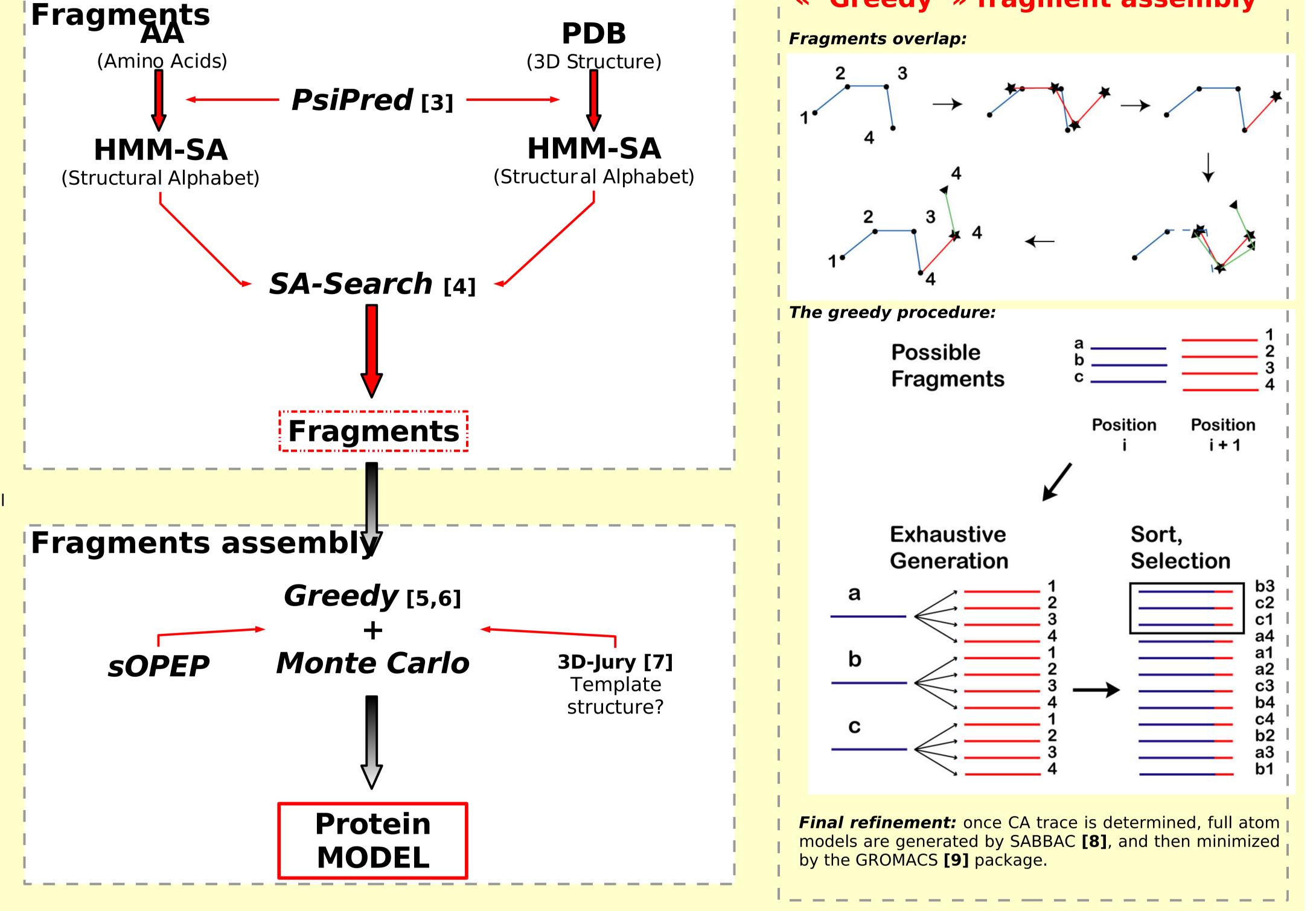
2 *Laboratoire de Biochimie Théorique,* UPR 9080 CNRS, IBPC et Université Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France

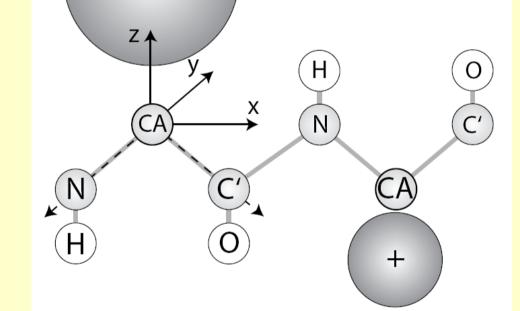


HMM-SA [1]: To describe protein local conformation, we use a Hidden Markov Model (HMM) learn from 1429 PDB structures. Each letter of the alphabet is a 4 residues length protein fragment. Consecutive fragments overlapp by 3 residues. We use a 27 letters structural alphabet. Each letter is associated with a canonical conformation. Since we perform rigid discrete assembly, we allow several sub-conformation per letter (a total of 155 prototypes to describe the 27 letters). Flowchart of the modelling procedure

Step 1: search for Candidates

« Greedy » fragment assembly




sOPEP : a simplified version of OPEP [2] is used to drive model generation :

 $E_{sOPEP} = E_{VdW} + E_{C_{\alpha}C_{\alpha}} + E_{PMF} + E_{\Phi>0} + E_{HB}$

Coarse grained sOPEP representation: Main chain is explicit and side chains are represented by one bead with a diameter depending on the considered amino acid.

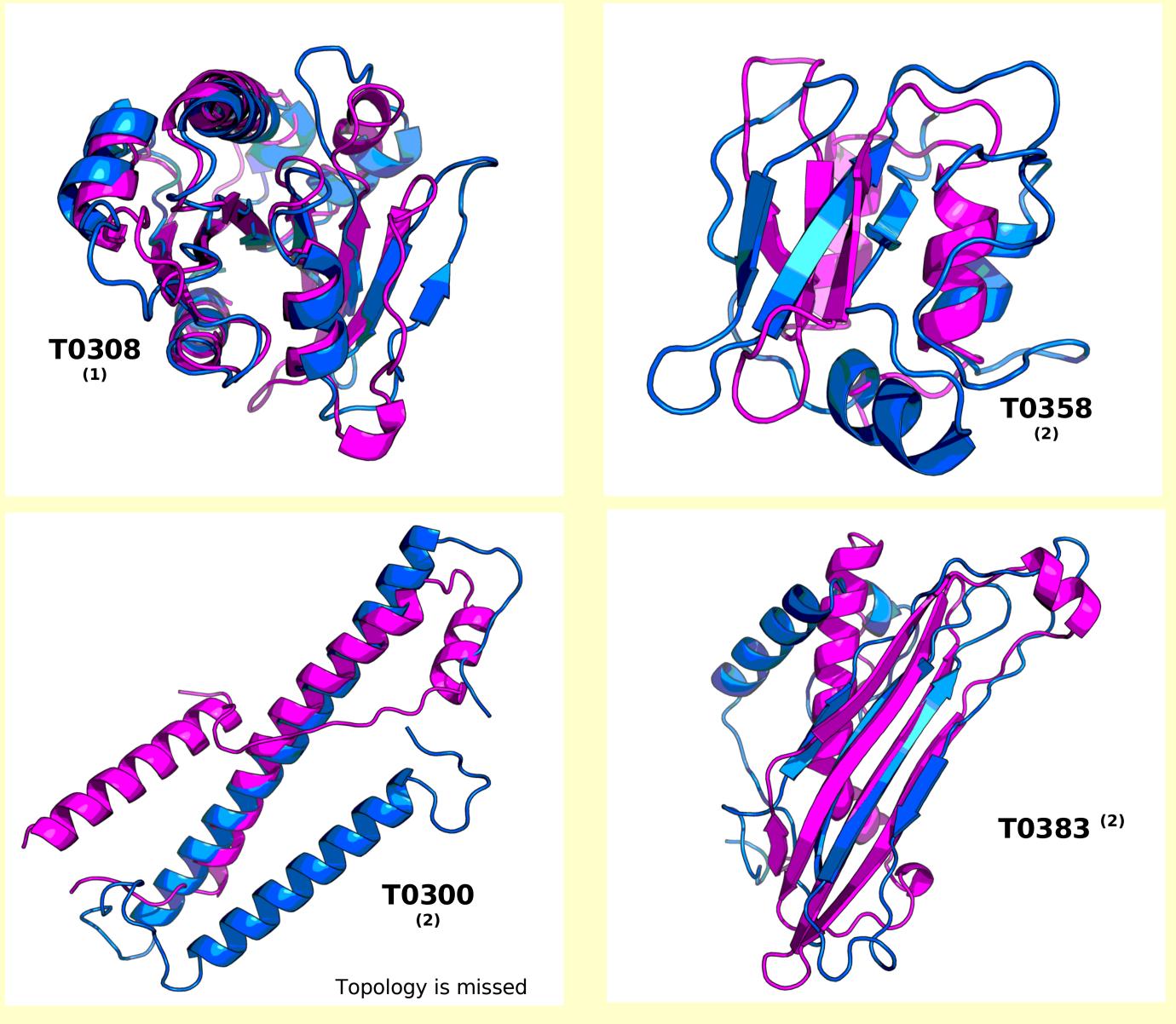
II. ANALYSING CASP7 RESULTS:

1. Assessing candidate fragments quality

	CutPref (#4)	PDB Blast (#9)	3D Jury (#2)	тот
% Coverage	97%	94 %	88%	94%
Search complexity All Prototypes	23.43 ±5.20	19.43 ±6.8	18.86 ±4.74	20.49 ±6.05
<i>Search complexity</i> Max 3 prototypes by letter	14.11 ±2.61	12.19 ±3.51	12.31 ±2.02	12.72 ±3.09
# HMM-SA letters per Pos	7.44 ±4.84	5.99 ±4.82	5.61 ±4.56	6.20 ±4.83
Best Rebuilt RMSd All Prototypes	0.88 A ±0.49	1.62 A ±0.52	1.34 A ±0.18	1.39 A ±0.57
Best Rebuilt RMSd Max 3 prototypes by letter	1.12 A ±0.41	1.96 A ±0.54	1.68 A ±0.33	1.70 A ±0.59

% Coverage: fraction of the protein described by candidate fragments. Remaining parts are filled using direct HMM-SA prediction from sequence.

Search complexity: Average number of rigid fragment used per residue during model generation.


HMM-SA letters per Pos: Average number of SA letters describing each position

(max is 27 - means everything, i.e. no prediciton).

Best build RMSd: We use the native structure to assess of accurately the candidate fragments can reconstruct it. This is our best possible reconstruction accuracy.

Targets are classified according to the Robetta server [11] classification (Cutpref, 3DJury, pdblast)

2. Assessment of model generation procedure

III. <u>Conclusions, perspectives:</u>

We have taken the opportunity of CASP7 to assess a new model generation procedure. Only few targets were submitted due to concurrent developpment / improvement of the procedure during CASP. Emphase was put on potentially difficult target.

Coming out:

- Candidate fragment selection seems efficient. The solution is in the selected fragments.

- Complete procedure, starting from sequence only (no template, de novo model generation) was able to produce in some case topologically satisfactory models.

Limitations:

- Assembly is too rigid for homology modelling

- The procedure needs a final model refinement able to shake the whole structure.

References:

[1] Camproux AC, Gautier R, Tuffery P. A hidden markov model derived structural alphabet for proteins. J Mol Biol. 2004 Jun 4;339(3):591605.

[2] P. Derreumaux, Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations. Phys. Rev. Lett. (2000) 85: 206-209.

[3] Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999 Sep 17;292(2):195-202.

[4] Guyon F, Camproux AC, Hochez J, Tuffery P. SA-Search: a web tool for protein structure mining based on a Structural Alphabet. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W545-8.

[5] Tuffery P, Guyon F, Derreumaux P. Improved greedy algorithm for protein structure reconstruction. J Comput Chem. 2005 Apr 15;26(5):50613.

[6] Tuffery P, Derreumaux P. Dependency between consecutive local conformations helps assemble protein structures from secondary structures using Go potential and greedy algorithm. *Proteins.* 2005 Dec 1;61(4):73240.

Some CASP7 models: in all cases, the native structure is colored in magenta, and our superposed model in marine blue. (1) "pdbblast" targets (2) "cutpref" targets. Pictures generated using the PyMol software **[10]**.

[7] Ginalski K, Elofsson A, Fischer D, Rychlewski L "3D-Jury: a simple approach to improve protein structure predictions." *Bioinformatics.*(2003 19(8):1015-8.

[8] Maupetit J, Gautier R, Tuffery P. SABBAC: online Structural Alphabet based protein BackBone reconstruction from AlphaCarbon trace. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W14751.

[9] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ GROMACS: fast, flexible, and free. J Comput Chem. (2005) 26(16):1701-18.

[10] DeLano, W.L. The PyMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org

[11] Kim DE*, Chivian D*, Baker D. (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32 Suppl 2:W526-31